Brain Injury, Development, and Juvenile Justice: Recommendations for Success
Acquired Brain Injury

- Traumatic Brain Injury
 - External Forces ex: assault, fall, blast injury, motor vehicle accident
- Non Traumatic Brain Injury
 - Internal Event ex: stroke, tumor, lack of oxygen, infection
Classification of Severity

Mild – Loss of consciousness 0-30 minutes (Concussion)

Moderate – Loss of consciousness 30 minutes to 24hrs

Severe – Loss of consciousness for over 24 hours
Brain Anatomy and Brain Development
Frontal Lobe
- Initiation
- Problem solving
- Judgment
- Inhibition of behavior
- Planning/anticipation
- Self-monitoring
- Motor planning
- Personality/emotions
- Awareness of abilities/limitations
- Organization
- Attention/concentration
- Mental flexibility
- Speaking (expressive language)

Parietal Lobe
- Sense of touch
- Differentiation: size, shape, color
- Spatial perception
- Visual perception

Occipital Lobe
- Vision

Cerebellum
- Balance
- Coordination
- Skilled motor activity

Temporal Lobe
- Memory
- Hearing
- Understanding language (receptive language)
- Organization and sequencing

Brain Stem
- Breathing
- Heart rate
- Arousal/consciousness
- Sleep/wake functions
- Attention/concentration
EARLY DEVELOPMENT
In the first few years of life, areas of the brain devoted to basic function change at a rapid pace. By age 4, primary senses and basic motor skills are almost fully developed. The child can walk, hold a crayon and feed himself.

SENSATION
Areas responsible for sensations like touch are almost as developed as they ever will be.

VISION
The part of the brain governing vision has already matured.

4 years old
LANGUAGE
The area of the brain governing language is immature, as indicated in orange, but continues to develop rapidly in children through age 10. The brain already has begun a “pruning” process, eliminating redundant neural links. This will accelerate in later years, one reason why learning a new language is easy for children and virtually impossible for many adults.

REASON
The dappled yellow and red areas of the prefrontal cortex indicate that this part of the brain, which affects abstract thinking, reasoning skills and emotional maturity, has yet to develop. This lack of maturity is one reason young children can’t juggle a lot of information and throw tantrums when presented with too many choices.

6 years old
FINE MOTOR SKILLS
While basic motor skills are well developed by age 5, children experience a burst of fine motor-skill development between ages 8 and 9, helping to explain gains in the ability to use scissors, write neatly or in cursive, and manipulate models and craft projects.

MATHMATICS
By the age of 9, the parietal lobes are beginning to mature. Development here allows children to acquire math and geometry skills. The pace of learning at this age is fast and can be enhanced with flashcards and math drills.

9 years old
JUDGMENT
The prefrontal cortex is among the last areas to mature. Until it does, children lack the ability to adequately judge risk or make long-term plans. Ask kids at this age what they want to be when they grow up, and the answer is likely to change often.

EMOTION
Deep in the limbic system, a capacity for creating emotion increases. As yet, this capacity is unrestrained by the prefrontal cortex, which lags behind. That’s why some teens can seem emotionally out of control.

LOGIC
The parietal lobes are developing rapidly at this age, as shown here in blue. The child’s intelligence and analytical abilities are expanding.

13 years old
SPECIALIZATION

In the teen years, an abundance of neural links continue to be discarded. Underused connections will die to help more active connections thrive. As a result, the child’s brain will become more specialized and efficient.

15 years old
ABSTRACT THOUGHT

The deep blue and purple of the maturing prefrontal cortex shows why the brains of older teenagers are capable of dealing with far more complexity than younger children. This development leads to a burst of social interactions and emotions among older teens. Planning, risk-taking and self-control become possible.

17 years old

![Brain Maturity Diagram]

- **Birth**
- **Age 4**
- **Age 9**
- **Age 15**
- **Age 21**

[Go to Age 21]
EXECUTIVE FUNCTIONS
Although the brain appeared to be almost fully developed by the teen years, the deepening blue and purple areas here show that tremendous gains in emotional maturity, impulse control, and decision-making continue to occur into early adulthood.

MATURATION
The 21-year-old brain is mostly mature, but the areas of green show that even at the threshold of legal adulthood, there is still room for increases in emotional maturity and decision-making skills, which will come in the next few years.

21 years old
Maturation & Foundation

Frontal-Temporal Region

(Adapted from Savage, 1999)
Pediatric TBI: Two Stages of Recovery

(Chapman, 2007)
Highlights from Past Research

• 60% of inmates have a history of brain injury prior to incarceration (Shiroma, et al., 2010)

• Criminal behavior appears to increase after TBI (Farrer & Hedges, 2011; Brooks et al., 1986; Fazel et al., 2011; McIsaac et al., 2016; Timonen et al., 2002; Elbogen et al., 2015)
 – Relationship of TBI to offense was stronger the more severe the injury

• Rate of TBI is 3 to 8 times higher among juvenile offenders (Hughes et al., 2015)

• Half of youth offenders have a history of loss of consciousness, with repeat injuries being very common (Davies et al., 2012; Kaba et al., 2013)
<table>
<thead>
<tr>
<th>Criminal Justice Entity</th>
<th>Total OSU Screened</th>
<th>Positive Screens</th>
<th>Percent Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulder County Jail - JET unit</td>
<td>198</td>
<td>139</td>
<td>70%</td>
</tr>
<tr>
<td>Boulder County Jail - JBBS unit</td>
<td>369</td>
<td>215</td>
<td>58%</td>
</tr>
<tr>
<td>Denver County Jail - RISE unit</td>
<td>1352</td>
<td>360</td>
<td>27%</td>
</tr>
<tr>
<td>Denver County Jail - Transition unit</td>
<td>732</td>
<td>449</td>
<td>61%</td>
</tr>
<tr>
<td>Larimer County Jail</td>
<td>480</td>
<td>287</td>
<td>60%</td>
</tr>
<tr>
<td>17th Judicial District (JD) FOP</td>
<td>31</td>
<td>30</td>
<td>97%</td>
</tr>
<tr>
<td>17th JD Veterans</td>
<td>111</td>
<td>47</td>
<td>42%</td>
</tr>
<tr>
<td>17th JD SOISP</td>
<td>69</td>
<td>28</td>
<td>41%</td>
</tr>
<tr>
<td>2nd JD Drug Court</td>
<td>686</td>
<td>299</td>
<td>44%</td>
</tr>
<tr>
<td>2nd JD Juvenile</td>
<td>445</td>
<td>82</td>
<td>18%</td>
</tr>
<tr>
<td>1st JD Recovery Court</td>
<td>81</td>
<td>49</td>
<td>60%</td>
</tr>
<tr>
<td>18th JD</td>
<td>51</td>
<td>28</td>
<td>55%</td>
</tr>
</tbody>
</table>
Juvenile Probation

Lifetime History (DJP n=226)

- Positive (n=35)
- Negative (n=191)
Division of Youth Corrections

Lifetime History (DYC n=148)

Positive (n=75)
Negative (n=73)
What does this tell us?

- Total number of screens: 4,160
- Total number of positive screens: 1,931
- Total percentage of adults with positive screens: 54%
- Total percentage of juveniles with positive screens: 18%
- Of those screened, 73% had current, positive neuropsychological impairment
Deeper dive

Childhood Violence
- 60% cohort
- 10% general population

Adult Victimization
- 62% cohort
- 2% general population

Suicide Attempts
- 39% at least one attempt cohort
- 4% thoughts, 1% plan in general population

School suspension
- 54% cohort
- 26% men; 15% women general population

Substance Abuse
- 93% history of abuse / misuse cohort
- 7% general population

Mental Health
- 75% at least one diagnosis in cohort
- 19% general population
We are NOT treating the brain injury, we ARE treating the behavioral health concern in the context of brain injury:

- Demystifies brain injury for non-brain injury professionals
- Empowers individuals with brain injury and families to advocate for appropriate supports
Building Blocks of Brain Development

The Hierarchy of Neurocognitive Functioning © - created by Peter Thompson, Ph.D. 2013, adapted from the works of Miller 2007; Retan and Wolfson 2004; Hale and Fiorello 2004.

The Building Blocks of Brain Development © – further adapted by the CO Brain Injury Steering Committee, 2016.
Addressing Behavioral Concerns Following Brain Injury: A Framework
Behavior Management

Behavior management techniques can be classified into two categories:

1. **Antecedent strategies**, which are used before a behavior occurs in an effort to prevent or elicit a behavior, and

2. **Consequent strategies**, which are used after a behavior occurs in an effort to prevent the continuation and recurrence of a behavior or to reinforce a behavior.

Although both can be effective ... in their own way, when applied at the right times.

Crisis Prevention instead of Crisis Management
Look For: The Function of the Behavior

- **Problem Behavior**
 - **Obtain/Get Something**
 - **Stimulation/Sensory**
 - Adult
 - **Social**
 - **Tangible/Activity**
 - Peer
 - **Escape/Avoid Something**
 - Get away with something...
 - We feel manipulated
 - Get $, get social status...
 - We feel manipulated
Executive DYSFUNCTION:
- Inability to delay gratification (wait)
- Inability to manage time – no future thinking which results in poor planning, organization or initiation

Social INCOMPETENCE:
- Inability to make better behavioral or social decisions.

- Lack of attention to feedback in environment = poor MEMORY & poor LEARNING = repetitive mistakes
Skill Vs. Will

If think they have the skill but choose to not use it, likely to think punishment

If think they don’t have the skill, less likely to think punishment, more likely to think of teaching the skill
Recommendations

- Training on brain injury
- Screen for History of Brain Injury
- Screen for Impairment
- Refer for Community Supports
- Accommodate the Symptoms of TBI
Importance of Screening for Brain Injury

One study found that 42% of persons who indicated they had incurred a TBI as defined by the CDC did not seek medical attention (Corrigan & Bogner, 2007).

- Brain injury increases risk for problem behaviors (Williams, Mewse, Tonks, Mills, Burgess & Cordan, 2010).

- Clients may be eligible for case management support/services.

- Psychotherapies can be adapted for neurocognitive deficits. Examples:
 - Minimize environmental distractions
 - Educational therapies (e.g. CBT, DBT) should emphasize pacing, provide frequent opportunities for clients to respond, generate feedback, and provide reinforcement to maintain client engagement
 - Written material/handouts where possible
 - Repetition of key points
 - Non-electronic devices might include checklists, pictures or icons, photograph cues, post-it-notes, calendars, planners, and journals
 - Therapies should be introduced with a simple rationale
Credible History

“The gold standard for determining prior TBI is self/parent-report as determined by a structured or in-depth interview” (Corrigan & Bogner, 2007)

• Comprehensive Health History Interview
 Health history must be an interview; it cannot be a form mailed to the parent/caregiver

• Credible history of TBI requires a skilled interviewer to know how to ask certain questions, to ask pointed questions multiple times and in a variety of ways, to establish the details of the injury.
Screening for Lifetime History

Ohio State University Traumatic Brain Injury Identification method (OSU TBI-ID)

Sites administer OSU TBI-ID (3-5 minutes)
Determined positive if meet ONE or MORE of the following criteria:
* Worst: moderate/severe brain injury
* First: injury with loss of consciousness before age 15
* Multiple: 3 or more with altered mental status or 2 injuries within a 3 month period
Ohio State University TBI Identification Method — Interview Form

Step 1
Ask questions 1-5 below. Record the cause of each reported injury and any details provided spontaneously in the chart at the bottom of this page. You do not need to ask further about loss of consciousness or other injury details during this step.

I am going to ask you about injuries to your head or neck that you may have had anytime in your life.

1. In your lifetime, have you ever been hospitalized or treated in an emergency room following an injury to your head or neck? Think about any childhood injuries you remember or were told about.
 - [] No
 - [] Yes—Record cause in chart

2. In your lifetime, have you ever injured your head or neck in a car accident or from crashing some other moving vehicle like a bicycle, motorcycle or ATV?
 - [] No
 - [] Yes—Record cause in chart

3. In your lifetime, have you ever injured your head or neck in a fall or from being hit by something (for example, falling from a bike or horse, rollerblading, falling on ice, being hit by a rock)? Have you ever injured your head or neck playing sports or on the playground?
 - [] No
 - [] Yes—Record cause in chart

4. In your lifetime, have you ever injured your head or neck in a fight, from being hit by someone, or from being shaken violently? Have you ever been shot in the head?
 - [] No
 - [] Yes—Record cause in chart

5. In your lifetime, have you ever been nearby when an explosion or a blast occurred? If you served in the military, think about any combat- or training-related incidents.
 - [] No
 - [] Yes—Record cause in chart

Interviewer Instruction: If the answers to any of the above questions are “yes,” go to Step 2. If the answer to all of the above questions are “no” then proceed to Step 3.

Step 2
Interviewer instruction: If the answer is “yes” to any of the questions in Step 1 ask the following additional questions about each reported injury and add details to the chart below.

Were you knocked out or did you lose consciousness (LOC)?
- [] If yes, how long?
- [] If no, were you dazed or did you have a gap in your memory from the injury?
- [] How old were you?

Have you ever had a period of time in which you experienced multiple, repeated impacts to your head (e.g., history of abuse, contact sports, military duty)?
- [] If yes, what was the typical or usual effect—were you knocked out (Loss of Consciousness - LOC)?
- [] If no, were you dazed or did you have a gap in your memory from the injury?
- [] What was the most severe effect from one of the times you had an impact to the head?
- [] How old were you when these repeated injuries began? Ended?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Loss of consciousness (LOC)/knocked out</td>
</tr>
<tr>
<td>No LOC</td>
<td>< 30 min</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Interviewer Instruction: If more injuries with LOC: How many? Longest knocked out? How many ≥ 30 mins? Youngest age?

Step 3
Interviewer instruction: Ask the following questions to help identify a history that may include multiple mild TBIs and complete the chart below.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Typical Effect</th>
<th>Most Severe Effect</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause of repeated injury</td>
<td>Dazed/memory gap, no LOC</td>
<td>LOC</td>
<td>Dazed/memory gap, no LOC</td>
</tr>
<tr>
<td>Began</td>
<td>Ended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Reserved 2007, The Ohio Valley Center for Brain Injury Prevention and Rehabilitation.
Screening for Lifetime History

Brain Check Survey (school aged children/youth)
• Parent-completed screening tool
• Approximately 15 minutes to complete

Categories:
1. Injury/Illness
2. Behaviors
3. Cognitive
4. Symptoms
5. Education Services
Brain Check: Screening Tool Project

Parent/Guardian Survey

Student Information

<table>
<thead>
<tr>
<th>Today's Date:</th>
<th>Child's Age:</th>
</tr>
</thead>
<tbody>
<tr>
<td>//___</td>
<td>____________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Child's Date of Birth:</th>
<th>Child's Gender:</th>
</tr>
</thead>
<tbody>
<tr>
<td>//___</td>
<td>Male/Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Child's race:</th>
<th>Please describe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: American Indian/Alaska Native</td>
<td></td>
</tr>
<tr>
<td>2: Asian</td>
<td></td>
</tr>
<tr>
<td>3: Native Hawaiian or Other Pacific Islander</td>
<td></td>
</tr>
<tr>
<td>4: Black or African American</td>
<td></td>
</tr>
<tr>
<td>5: White</td>
<td></td>
</tr>
<tr>
<td>6: More than one race</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Child's ethnicity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Hispanic or Latino</td>
</tr>
<tr>
<td>2: Not Hispanic or Latino</td>
</tr>
<tr>
<td>3: Unknown or Not Reported</td>
</tr>
</tbody>
</table>

Injuries or Illnesses

<table>
<thead>
<tr>
<th>Injury or Illness</th>
<th>Age</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blow to Head</td>
<td></td>
<td>Check all that apply:</td>
</tr>
<tr>
<td>(from sports, playing, biking, falling, getting hit by an object, etc.)</td>
<td>At what age?</td>
<td></td>
</tr>
<tr>
<td>Concussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of consciousness, for how long?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coma, for how long?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confusion or altered mental state</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCJJ: Age of Delinquency Task Force July 10, 2019 Brain Injury, Development, & Juvenile Justice
Screening for Impairment

• OSU TBI-ID does not screen for impairment

• Important to understand deficit areas so that appropriate accommodations and strategies can be implemented

• Variety of ways to screen for impairment:
 - Symptoms Questionnaire
 - Neuropsychological Screen
 - Neuropsychological Evaluation
Symptoms Questionnaire

https://mindsorceolorado.org/questionnaire-test/
Cognitive Strategies for Community Mental Health

- Memory Problems
- Delayed Processing
- Attention Problems
- Inhibition Problems/Impulsivity
- Physical and Sensorimotor Problems
- Language Problems
- Organization Problems
- Mental Inflexibility
- Emotional Dysregulation
- Appendix – Sleep

All rights reserved: © CDE/MINDSOURCE

A.H.E.A.D.

https://mindsourcecolorado.org/ahead/
Neuropsychological Screen

Clinical Interview Automated Neuropsychological Assessment Metric (ANAM) Core Battery (Reeves, Winter, Bleiberg, & Kane, 2007)
Library of computer-based assessments of cognitive domains including attention, concentration, reaction time, memory, processing speed, and decision-making with a very strong normative database
Sensitive to the deficits associated with brain injury (Kane, Roebuck-Spencer, Short, Kabat & Wilken, 2007)

NORMS
3400 high school and college athletes ages 12 to 24 years
145 males and females ages 9 to 33 years from pediatric lupus study
444 community dwelling adults ages 18 to 86 years
107,500 active duty military personnel

Neuropsychological Assessment Battery Screening module (NAB-SM; Stern & White, 2000)
Attention, Language, Memory, Spatial, and Executive Functions
Sensitive to the deficits associated with brain injury (Zgaljardic, & Temple, 2010)

NORMS
1488 18-97 year old individuals

Effort tests
Recommendations

1. Provide training on brain injury for criminal justice staff
2. Screen for lifetime history of brain injury
3. Screen for impairment
4. Provide simple adjustments/accommodations
5. Implement a psycho-educational curriculum
6. Refer for neuropsychological screen when indicated
7. Refer to the Brain Injury Alliance of Colorado for community based case management and/or education consultation
Thank you for your time!

Judy Dettmer, Director
Judy.dettmer@state.co.us
303-866-4085